Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory

نویسندگان

  • Changjian Zhang
  • Haining Wang
  • Weimin Chan
  • Christina Manolatou
  • Farhan Rana
چکیده

We measure the optical-absorption spectra and optical conductivities of excitons and trions in monolayers of metal dichalcogenide MoS2 and compare the results with theoretical models. Our results show that the Wannier-Mott model for excitons with modifications to account for small exciton radii and large exciton relative wave function spread in momentum space, phase space blocking due to Pauli exclusion in doped materials, and wave-vector-dependent dielectric constant gives results that agree well with experiments. The measured exciton optical-absorption spectra are used to obtain experimental estimates for the exciton radii that fall in the 7–10 Å range and agree well with theory. The measured trion optical-absorption spectra are used to obtain values for the trion radii that also agree well with theory. The measured values of the exciton and trion radii correspond to binding energies that are in good agreement with values obtained from first-principles calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2

We present results on the radiative lifetimes of excitons and trions in a monolayer of metal dichalcogenide MoS2. The small exciton radius and the large exciton optical oscillator strength result in radiative lifetimes in the 0.18–0.30 ps range for excitons that have small in-plane momenta and couple to radiation. Average lifetimes of thermally distributed excitons depend linearly on the excito...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.

We report the observation of trions at room temperature in a van der Waals heterostructure composed of MoSe2 and WS2 monolayers. These trions are formed by excitons excited in the WS2 layer and electrons transferred from the MoSe2 layer. Recombination of trions results in a peak in the photoluminescence spectra, which is absent in monolayer WS2 that is not in contact with MoSe2. The trion origi...

متن کامل

Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers

We investigate valley exciton dynamics in MoSe2 monolayers in polarizationand time-resolved photoluminescence (PL) spectroscopy at 4K. Following circularly polarized laser excitation, we record a low circular polarization degree of the PL of typically ≤ 5%. This is about 10 times lower than the polarization induced under comparable conditions in MoS2 and WSe2 monolayers. The evolution of the ex...

متن کامل

Valley Polarization of Trions and Magnetoresistance in Heterostructures of MoS2 and Yttrium Iron Garnet.

Manipulation of spin degree of freedom (DOF) of electrons is the fundamental aspect of spintronic and valleytronic devices. Two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit an emerging valley pseudospin, in which spin-up (-down) electrons are distributed in a +K (-K) valley. This valley polarization gives a DOF for spintronic and valleytronic devices. Recently, magnetic excha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014